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Variational Solutions on Two Opposite
Narrow Resonant Strips in Waveguide

KAI CHANG, SENIOR MEMBER, IEEE

Abstract — A variational analysis with experimental verification is made
to calculate the discontinuities due to the two opposite narrow resonant
strips in waveguide. The current ratio between the strips is determined and
the mutual interactions are calculated. The analysis gives a closed-form
solution which is quite general and which can be used to illustrate several
special cases.

I. INTRODUCTION

HIS PAPER reports an analysis of two narrow, trans-
verse, resonant strips located at the opposite sides of a
rectangular waveguide. The variational method is used to
determine the current ratio between the strips. The current
distribution is then used for impedance calculation. The

mutual coupling between the strips can be obtained from °

the total impedance.

Various strips in rectangular waveguide have been
analyzed in the past. These include a single inductive strip
[1}, a single capacitive strip [2], [3], two inductive strips
[4]-[7], and three strips [8]-[10]. The results for strips can
be applied to round posts by using a post-diameter-to-
strip-width equivalence factor [11], [12] and the effect of
phase variation of the field across the post [13], [14].

This paper reports an analysis on two resonant strips
located at the opposite sides of the waveguide transverse
plane, as shown in Fig. 1. The two strips can be unsym-
metrically located and there is no restriction on gap size.
The strips can have different widths. The analysis gives a
closed-form solution which is quite general, and several
special cases can be derived. Two special cases of this
structure, shown in Fig. 2, are of significant practical
interest, and have not been analyzed previously. The case
shown in Fig. 2(a) consists of an inductive strip and a
capacitive strip. The other case is a single strip with a gap,
as shown in Fig. 2(b). These two cases will be discussed in
detail. Other special cases are also mentioned briefly.

These circuits should have many applications in the
design of compact waveguide filters and matching net-
works, in the determination of diode mounting circuits,
and in the study of multidiode circuits. The resulting
current distribution and mutual coupling effects between
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Fig. 1. Cross section of rectangular waveguide with two capacitive
strips located at opposite sides of the same transverse plane.

the strips provide some physical insight into the multiple-
strip interactions.

Restriction of the analysis to narrow strips does not
significantly limit the practical applicability of the results
in circuit design.

II. THEORETICAL ANALYSIS

The structure to be analyzed is shown in Fig. 1. The
strip is assumed to be infinitesimally thin, and to be
sufficiently narrow that the current does not vary appre-
ciably with x. Both the strips and the waveguide are
assumed to be formed of material having infinite conduc-
tivity. The strips are located at z = 0.

Considering a dominant-mode incident electric field

-

X
E,=sin( =~ exp(~ Typ2)s (1)
a
the resulting scattered field can be given by
E,= = jou, [G(F)-J () dF’ 2)

where the integration is carried out over the entire strip
surface S =S, + §, and the dyadic Green’s function used
here can be found from Tai [15].

Following the procedure set out in [2], the total normal-
ized shunt susceptance B, may be expressed in the follow-
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Using a method similar to that of Lewin [16], equation

(3) can be shown to be stationary for small variations in J,

about its correct value. Use of an approximate form for J,

T in (3) yields a lower bound on the true value of the
& oW, susceptance.
e To evaluate B, we employ the following approximate
| form for the current density J,(x, y), suitable for use when
I o x the strips are narrow [2]. The current is assumed constant
;._01_.} } a across each strip in the x-direction.
D
w w
@ Jy(x,y)=A[u(x—c1+-il)—u(x—c1———21)}
y -sink;(y—b+d,)
. —fA u(x—-c2+-2—)
— W
| Wall .
— :T:g —ulx == = |[sinky(dy— y) 4)
h
W, . .
| = - x where d; and d, are the depths of the strips, f is the
:‘—cﬁ«———: a current density ratio, and A is an amplitude constant.
(c2) Here, u(x) is the step function defined by
(®)
Fig. 2. Two special cases of great interest. (a) One inductive strip and u( x) = {1 ’1f x>0
one capacitive strip. (b) A single strip with a gap. 0 if x<0.
ing variational form:
ax 2 277, 2
_2[£Jy(x,y)51n7dxdy] o o - (2~8m)(k0— X )
T Y10 > X+ X T
—_ n=2m=0 m=1 nm
k % atn=1
. nax  nwx’ may may’
-LlJy(x,y)Jy(x’,y’)51n sin — = cos — = cos dxdx'dydy’ | (3)
where The current amplitude is maximum at the interface of
the strip and the waveguide wall and decreases sinusoidally
_J1 when m =0 o ) i
3, = 0 when m = 0 until it becomes zero at the end of the strip. The values for
k, and k, can be found by [2]
mn?  nlg? , 1/2 T
nm ( b2 (12 0) kl ) dl
X 27 X T
0 - A 2 2d2 )

2412
Tyo=-JjTw= (k(%“;'z')
S=58+85,

and J,(x, y) is the y-directed current density over the two
strips.

The direction of current flow in the second strip is
opposite to that in the first strip, and a negative sign is
placed on the current amplitude to account for this dif-
ference.

Substituting the current density from (4) into (3), we
have a closed-form solution for the total normalized sus-
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ceptance: O
= ~2F+fB,)’
BT =" oo 5 o0 )
n=1m=1 n=2 | i
(5) 5, § 3.
Bu
where
i ( + wy wy 4 —4
1 Ty Cqy - ) T ( Cy— = )
F,=—/|cos —Cos 2 T T
ky a a
(cosk,d; —1)
I w, W, O
1 T Cy+ ) 77((‘2-———) . . . - - _
2 Fig. 3. Equuvalent circuit for two-strip obstacle. Note By = B; + B, +
F,=—|cos —Cos B,
k, a a
(1= 2
(1-cosk,d;) T,= —(cosk,d,—1)
2 2 k
0T Tz w w
b, -tol B 1 mle-7)  fars)
"okl r,, 2n? cos —cos
a a
2k, b*
"m:bzklz—m2772 E =h_
_ " T,, 4n*
w1 w1
nvr(cl—T) nw(c1+ ) B
cos —cos To evaluate By, the value of the current density ratio f
| a a must be determined by use of the variational principle.
This ratio can be determined by extremizing the varia-
ma(b—d;) . . =
cos ——= —(—=1)"cos k,d, tional expression for By.
‘ b Putting 3B, /df = 0 yields an equation for f in the form
T
0 x o0 o0 o0 o0
B L L ourit L ES| A L T 00.n+ X £
=1m= =2 =1m=1 =2
f= o] o0 OOn nOO mOO s [ee) ° (6)
Fl( Z E Z Z nm nm) - E’Z( Z Z Dannman -.l- Z EVITVISV!)
n=2 = n=1m=1 n=2
2k,b* mad., The mutual coupling susceptance between the two strips
Qum= mPn? — bok3 Cos T8 kad, is defined by the fillowifg equition:_
W W By = Br—(By+B,). (7)
2 2 _ -
”'”(C 2 7) ’“T(C 2 T —2‘) B, and B, would be the normalized susceptances of one
T |cos —cos strip if the other strip were absent, ie., if the interactive
a a . . -
coupling effects could be neglected. The equivalent circuit
) of the two strips is shown in Fig, 3.
= —(1—cosk,d
S k, (1=coskyd,) III. EXPERIMENTAL VERIFICATION AND
w W THEORETICAL DISCUSSION
1 1
nw(c 17 _5) "77(01 + —2‘) The theoretical results were verified with the experimen-
-|cos —Cos P tal results at X-band. The waveguide has dimensions a =
a

0.900 in and b = 0.400 in. The results are shown in Fig. 4.
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Fig. 4. Normalized values of strip total susceptance as a function of
frequency for two strips with ¢; =045 in, w;=0.08 in, d,=0.3 in,
¢y =0.671n, wy = 0.08 in, d, = 0.3 1n The solid line shows theoretical
results and the crosses show the experimental results.

Good agreement has been achieved. The principal source
of error in the measurements occurs in determination of
the insertion depth of the narrow strips.

Figs. 5 and 6 show the variation of the total normalized
susceptance as a function of strip depth d, for two differ-
ent frequencies. The two strips have the same width and
are symmetrically located. It can be seen that *he current
density ratio is equal to —1 as the two strips hc = the
same depth, i.e., d; = d,. In this case, the current on each
strip has the same amplitude. It can be seen that the
susceptance and current density ratio can vary over a very
wide range. Series or parallel resonances could occur at a
certain depth of insertion depending on the operating
frequencies. The current density ratio can take any real
value, since one strip may be resonant at a certain frequency
and will effectively present a short or open circuit across
the waveguide.

The analysis can readily used to study the mutual cou-
pling effects between two resonant strips. For simplicity,
we consider two strips having the same width and depth
symmetrically located on the transverse plane of the wave-
guide. The normalized total susceptance and mutual cou-
pling susceptance as a function of the interstrip spacing
are shown in Figs. 7-9 for three typical cases. If the strip
insertion is shallow (Fig. 7), the total susceptance is capaci-
tive and the mutual coupling is small. The coupling is
mostly inductive except at very close spacing. As the strip
insertion increases, the total susceptance and mutual cou-
pling have much larger values, which can be either induc-
tive or capacitive depending on the strip separation (Fig.
8). For deep insertion, as shown in Fig. 9, the strips act as
an inductive element, and the mutual coupling is similar to
that of two inductive strips {4].
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Fig. 5. (a) Normalized total susceptance and (b) current density ratio as
a function of the strip mnsertion at 9 GHz. The following dimensions are
used: w;=w, =0.051m, ¢=031in, ¢;=061n, d, =025 1, a=0.9
in, and b= 04 in.
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Fig. 6. (a) Normalized total susceptance and (b) current density ratio as
a function of the strip insertion at 11 GHz The following dimensions
are used: w;=w,=0.05 in, ¢,=03 in, ¢, =0.6 in, d,=0.25 in,
a=091in and =04 1m
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Fig. 7. (a) Normalized total susceptance and (b) mutual coupling as a
function of interstrip spacing for the case of the shallow insertion at
11 GHz. The following dimensions are used: a=0.9 in, b=0.4 m,
w=w,=0.051n, d;=d, =01751in, and ¢; =a — ¢,.

IV. ONE CAPACITIVE STRIP AND ONE
INDUCTIVE STRIP

A special case of the above analysis can be applied to
two resonant strips with one of the two strips extending
across the whole waveguide narrow dimension, as shown in
Fig. 2(a). In this case, d, =b and Q,,,, = 0; egs. (5) and (6)
become

_ —2(F, + /)
BT — ( 1 ofo 2) (8)
DnmPan + Z EVI(SH + an)2
n=2

0 0 0 00
FZ Z Z DnmPn2m+ Z EnSn2 - Fl Z EnT;1Sn
n=12

©)

Measurements were carried out with strips in conven-
tional X-band waveguide. Both theoretical and experimen-
tal results are shown in Fig. 10 for comparison. The sum of
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Fig. 8. (a) Normalized total susceptance and (b) mutual coupling as a
function of interstrip spacing for the case of moderate strip insertion at
11 GHz. The following dimensions are used: ¢ =0.9 in, b= 04 in,
wy=w,=005in, d,=d,=0251in,and ¢;=a— ¢,.

B, + B, is also shown in the same graph; it differs signifi-
cantly from the experimental results, thus indicating the
significant contribution of B,, and Bj.

The normalized total susceptance and the current den-
sity ratio as a function of strip depth are shown in Fig. 11.
As in Figs. 5 and 6, the current ratio and total susceptance
vary over a wide range. As the strip depth increases, a
shunt resonance occurs first, followed by a series reso-
nance.

V. SINGLE STRIP WITH A GAP
Another special case of great interest is a single strip
with a gap, as shown in Fig. 2(b).
Fig. 12 shows the normalized susceptance as a function
of the gap location h, which is given by

1
h=d,+—(b—di—dy). (10)
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Fig. 9. (a) Normalized total susceptance and (b) mutual coupling as a
function of interstrip spacing for the case of deep insertion at 11 GHz.
The following dimensions are used: ¢ =0.9 in, b=0.4 in, w;=w, =
0.05in, dy=d,=035m,and ¢;=a—¢,.

When 4 =02 in=0.5 b, the gap is located at the center
and the current ratio f = —1. As & increases, the lower
strip gets more influence and the current density ratio
becomes larger.

VI. OTHER SPECIAL CASES

The results given by (5) and (6) can be used for other
special cases (Fig. 13). These cases have been published
before and thus only brief discussion is presented.

A. Two Inductive Strips

The structure is shown in Fig. 13(a). In this case, we
have the following conditions

di=b
dy=b
P,.=0
Q=0
f=-1
Equation (5) reduces to
B, - w‘z(F1+fF2)2 . (1)
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Fig. 10. Normalized total susceptance as a function of frequency com-
pared with experimental results. The two strips have ¢;=0.18 in,
¢y =0.7in, d; = 0.2941in, d, = 0.4 1n, and w, = w, = 0.133 1n. The solid
line shows the theoretical results and the crosses show the experimental
results. The dashed line shows the sum of B; + B,
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Fig. 11 (a) Normalized total susceptance and (b) current density ratio
as a function of the strip depth at 9 GHz. The following dimensions are
used for calculation: w; =w, =0.051n, ¢, =03 in, ¢, = 0.6 1n, d, = 0.6
in, a=10.4 in, and =04 1n.
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Other special cases. (a) Two inductive strips. (b) A single
capacitive strip. (c) A single inductive strip.

Fig. 13.
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Equation (6) is

o0 [>e]
F, Y ETLS,~F ) ES;

n=2

3] o
Fl Z EnT;lz—F2 Z EnTnSn

n=2

n=72

/= (12)

n=2
Equations (11) and (12) are equivalent to the results previ-
ously reported in [4].
B. One Single Capacitive Strip

This configuration is shown in Fig. 13(b). If only the
first strip exists, we have

f=0.
Equation (5) becomes

BT

0 e .
Y X D,.P.,

n=1m=1

=— (13)
L ESI+
n=2

If only the second strip exists, we have
f=o0.

Equation (5) becomes

_2F2
B, 2

="% 3]

n=1m=1 n

Equations (13) and (14) are equivalent to (10) in [2].

C. One Single Inductive Strip

As shown in Fig. 13(c), the normalized susceptance of
this case can be obtained from (5) by setting

f=0
d,=b
P, =0.
Equation (5) becomes
—- -2F?
Br=—s—. (15)
L ES;
n=12

This expression is equivalent to (89) in ch. 8 of [1].

VIIL.

A closed-form expression for the susceptance of two
opposite resonant strips in waveguide has been derived.
Important information on current density ratio and mu-
tual coupling was obtained. The results agree well with the
experimental data and should have direct application in
the design of compact filters, matching networks, and
diode mounting circuits.

The analysis is quite general and can be used to calcu-
late the obstacle impedance of various configurations, such
as a single strip with a gap, a single capacitive strip and an
inductive strip, two inductive strips, a single capacitive
strip, and a single inductive strip.

CONCLUSIONS
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